

1/12-SCALE ELECTRIC ON-ROAD CAR

INSTRUCTION MANUAL

INTRODUCTION

Congratulations on purchasing your Awesomatix car! The A12 car was produced by UAB Awesomatix company.

BEFORE YOU START

The A12 car is the high-quality, innovative $1 / 12$-scale on-road car and should be built only by persons with previous experience building R/C model racing cars.
This is not a toy and is not intended for use by children without direct supervision of a responsible, knowledgeable adult. Read the instruction manual carefully and fully understand it before beginning assembly. If you have any problems or questions please do not hesitate to contact the Awesomatix team at support@awesomatix.com. If, for any reason, you decide that you do not want your A12 car you must not begin assembly.
Your A12 car cannot be returned to UAB Awesomatix for a refund or exchange if it has been fully or partially assembled.
This kit is a radio controlled model racing product and could cause harm and personal injury. The A12 car is designed for use on r/c car race tracks. It should not be used in general public areas. UAB Awesomatix accept no responsibility for any injuries caused by making or using this kit.

Due to policy of continuous product development the exact specifications of the kit may vary.
UAB Awesomatix do reserve all rights to change any specifications without prior notice. All rights reserved.

ASSEMBLY NOTES

You can find the useful tips of A12 assembling and the A12 editable setup sheet on the Internet site: http://site.petitrc.com/reglages/awesomatix/setupa12/

GENERAL PRECAUTIONS

- Many of the items in this kit are small enough to be accidentally swallowed and are therefore potential choking hazards, making them potentially fatal. Please ensure that when assembling the kit you do so out of the reach of small/young children.
- Take care when building, as some parts may have sharp edges.
- Please read this manual carefully to understand which ancillary items (tools, electrics, electronics etc) are used with this kit.

Awesomatix Innovations accept no responsibility for the operation of any such ancillary items.

- Exercise care when using tools and sharp instruments.
- Follow the operating instructions for the radio equipment at all times.
- Never touch rotating parts of the car as this may cause injury.
- Keep the wheels of the model off the ground when checking the operation of the radio equipment.
- To prevent any serious personal injury and/or damage to property, be responsible when operating all remote controlled models.
- The model car is not intended for use on roads or areas where its operation can conflict with or disrupt pedestrian or vehicular traffic.
- Do not run your car in poor light or if it goes out of sight. Any impairment to your vision may result in damage to your car or, worse, injury to others or their property.
- As a radio controlled device, your car is subject to radio interference from things beyond your control. Any such interference may cause a loss of control of your car so please consider this possibility at all times.
- When not using RC model, always disconnect and remove battery.
- Insulate any exposed electrical wiring to prevent dangerous short circuits. Take maximum care in wiring, connecting and insulating cables. Make sure cables are always connected securely. Check connectors for if they become loose and if so reconnect them securely. Never use R/C models with damaged wires. A damaged wire is extremely dangerous and can cause short-circuits resulting in fire.

EQUIPMENT RECOMMENDED (NOT INCLUDED)

- Radio Transmitter
- Radio Receiver
- Electronic Speed Control
- Steering Servo
- Servo Saver
- Electric Motor
- Pinion Gear (64 or 48 Pitch)
- Spur Gear (64 or 48 Pitch)
- 1S Li-Po Battery
- $1 / 12$ scale Body Shell
- $1 / 12$ scale Wheels and Tires

TOOLS RECOMMENDED (NOT INCLUDED)

- $1.5 \mathrm{~mm}, 2.0 \mathrm{~mm}, 2.5 \mathrm{~mm}$ Hex Drivers
- 12 mm Wrench
- Sewing Needle or Sharp Pin
- Callipers
- Hobby Knife
- Ride Height Gauge
- Thin CA Glue
- Thread Lock
- Double Side Tape
- Silicone Oil for Dampers
- Joint Grease

STEP 1

Note: SH1.5W is $7.4 \times 3 \times 1.5 \mathrm{~mm}$ alloy spacer.

STEP 2

STEP 3

STEP 4
 between ST1205 and ST1209M/L

STEP 5

Note: Lubricate OR153V via silicone oil
Stretch OR153V via fingers and put it on ST1202 (to avoid the damage of o-ring please don't use a sharp edged tool for this!).

STEP 6

Note: Add $\sim 0,3 \mathrm{~g}$ of $50000 \ldots 100000$ cst silicone oil into cavity of ST1204 damper case. We recommend 100000 cst silicone oil as the base setup.
Keep ST1204 upright for several minutes until all oil reaches the bottom of the cavity.

STEP $7 \quad$ Note: Insert ST1202 damper rotor into ST1204 damper case slowly.
After the lower face of the ST1202 reaches the oil in the bottom of the cavity, the ST1202 will need an additional force to be pushed fully into the proper position. We recommend using a rubber band or OR230 o-ring as shown in the picture. The oil will start to come up towards the top of the cavity of the ST1204 as the ST1202 is pushed further into that cavity by the o-ring. When the OR153V o-ring and the ST1204 damper are close to flush (almost fully inserted), please use a sewing needed or a sharp pin along the recess of the ST1202 to move the o-ring out of position and allow more oil to be pushed out from the ST1204 case. Using this needle or pin will allow the ST1202 to be fully seated and sit perfectly flush with the ST1204 damper case.

ST1204

STEP 8

Repeat the STEPS 5,6,7 for other side of ST1204 and check that both ST1202 rotors reached the desirable position (flush with the ST1204 face)

STEP 9

STEP 11

STEP 13

Press both B168ZZ bearings into AT1203 rear beam.

STEP 14

Note: ST1208 steering block posts provide 4 deg caster.

The tip of $1,5 \mathrm{~mm}$ hex driver or optional
RHG 4.2 probe is used for alignment of the appropriate holes of ST1208
 and C1205

Alignment of the appropriate holes of ST1208 and C1205 for camber settings.

STEP 15

The front damping of the steering blocks is adjusted via:

1) Number of the o-rings installed (0,1 or 2).
2) O-ring's preload by $\mathbf{S H 0 . 1 ~} 6 \times 8 \times 0.1 \mathrm{~mm}$ shims.
3) Lubricant for o-rings.

SH0.1 $0 . .2 \longrightarrow$
4) Amount and viscosity of the damping fluid inside the steering blocks.

Note orientation!

SH1.0

OR155SI x $0 . .1$
SHO. $1 \times 0 . . .2$
DT1202

AT1201

As initial setting we recommend to use only one lower OR155SI oring lubricated by joint grease without preload by SH0.1 shims. Another option is to use no orings and only thick grease on the ST1207 in the steering blocks, depending on track conditions.

Oil filled steering blocks also need to a space for exessive oil to be removed, to bleed the steering block. Like the rear damper, use a needle to create a gap between the o-ring and the steering block to allow excess oil to be removed.

STEP 16

Note: SPR12FS Front Soft Springs (Silver) and SPR12FM Front Medium Springs (Gold) come in the A12 kit.

SH12S-0.2 0.2 mm thickness shims are used to set the front spring preload and the front ride height.

Attention! When installing SH12S0.2 shims, make sure they surround the ST1207 but not below or above the ST1207 end faces.

STEP 17

Installation of the standard mini servo.
Installation of the SANWA SRG servo.

Note: ST24-4.0 are 4.0mm ball studs. ST24-4.0 fit P1213 4.0mm ball cups.

STEP 18

Installation of the SANWA SRG servo.

STEP 19

Left steering link
Right steering link

Install both steering links.

STEP 20

Snap the spring on the groove of ST1211 retainer and rotate the spring to find the mutual angular position that provides a perfect alignment of the spring and retainer.

Using the outer hole for ST1211 retainer provides about a 50\% increase in the effective spring rate against side roll.

STEP 23

Note: Use OR91 9x1mm o-ring with the thick spur gears. Use OR915 9x1.5mm o-ring with the thinner spur gears (TC-style spur gears).

Note: Tighten AT1215 nut via12mm wrench. Please don't overtighten AT1215 nut!

Carbon Spool set CS-1 (optional).

Note: Use SC3X5 or SC3X6 depending of the rear rims chosen.
Some rims may need optional $3 \times 8 \mathrm{~mm}$ screws (not included).

STEP 27

Install:

Speed controller (not included),

RHG 4.2 Ride Height Gauge (optional)
RHG 4.2 gauge is designed for setting and measuring the ride height under rear damper of the A12 car (DRH - Damper Ride Height) and can be also used for setting and measuring of the front ride height (FRH) and the rear ride height (RRH).
RHG 4.2 gauge provides a $3.0-4.2 \mathrm{~mm}$ range for ride height measuring without ST1215 spacer. With ST1215 spacer the gauge provides a $4.0-5.2 \mathrm{~mm}$ and $4.5-5.7 \mathrm{~mm}$ ranges (positions " +1 " and "+1.5" of ST1215 spacer).

ST1215 RHG Spacer

" +1 " RHG Spacer position for ride height measuring within 4.0-5.2 mm range.

ST1214 RHG Probe

AT1210 RHG Indicator

The DRH - ride height under rear damper measuring.

The RRH - rear ride height measuring.

The FRH - front ride height measuring.

Setting of the DRH－the ride height under rear damper．

The ride height under rear damper（DRH）is set via preload of two side coil springs SPR12S in conjunction with the optional additional preload via set screws in the two side beams AM1205． These beams act as springs when the screws in them press on the AM1204 chassis plate． A12 setup sheet includes two values for the rear ride height．DRH 1 shows the ride height resulting from side spring pressure only，without the use of AM1205 side beams．DRH ride height is the final ride height of the car（which can be a combination of both side springs and side bars to reach this final desired height）．For example，DRH1（damper ride height set with only side spring pressure）will equal DRH when side beams are not being used，as there is no additional side beam pressure．

Setting of the Rear Droop．

Adjusting of SS3X10 set screw depth（Droop Screw Depth） is used for setting of the rear suspension droop（Rear Droop）．
Droop Screw Depth can be measured via calipers or via counting of the number of turns the screw is screwed into damper＇s case．Every turn of the thread is $0,5 \mathrm{~mm}$ in depth． So for example， 4 full turns of SS3X10 screw starting from position when the lower face of the screw coincides with the lower face of the damper corresponds to 2mm Droop Screw Depth． Enter Droop Screw Depth value into the A12 editable setup sheet．The rear droop value will be calculated automatically based on the DRH and RRH data．

COMMENTS:

Spare parts

Parts \#	Description
AM1202	Motor Mount
AM1203	Battery Plate
AM1204	Chassis Plate
AM1205	Side Beam
AM1206	Front Nut
AM1207	Left Bulkhead
AT1201	Steering Block Nut
AT1202	Servo Post
AT1203	Rear Beam
AT1204	Steering Block
AT1206	Servo Plate Post
AT1207	Left Hub
AT1215	Spur Nut
AT25-2	Turnbuckle 39mm x2
DT1202	Steering Washer
ST1201	3mm Ball Stud
ST1202	Damper Rotor
ST1203	Downstop Rod
ST1204	Damper Case
ST1205	Ball Cup
ST1207	Steering BlockTube
ST1208	Steering Block Post
ST1209-M	Ball Stud
ST1209-L	Ball Stud Long
ST1211	Spring Retainer
ST24-4.0	4.Omm Ball Stud
ST24	4.8x6mm Ball Stud
STA1212	Composite Axle
P1215	Foam Bumper
P13-4	Ball Cup
P1213	Ball Cup 4.0 mm
P06-1	Insert
P14-2	Body post
C1201	Servo Plate
C1203	Body Holder
C1204	Bumper Plate
C1205	Suspension Plate
SPR12FS	Front Spring Soft
SPR12FM	Front Spring Medium

Optional parts

Parts \# Description

RHG 4.2 Ride Height Gauge
CS-1 Carbon Spool set
AT1204-ZT Steering Block Zero Trail
AT1208 Right Hub
ST1208-C5 Steering Hub Post 5 Deg
ST1208-C6 Steering Hub Post 6 Deg
ST1216 Balance Weight 5 g
ST1212 Spring Steel Axle
C1205-ZT Suspension Plate Zero Trail
C1201-ZT Servo Plate Zero Trail
C1206 Carbon Axle
C1205AL Suspension Plate Alloy
OR155PU $\quad 1.5 \times 3 \mathrm{~mm}$ O-Ring PU
SPR12FH Front Spring Hard
SPR12S0.4 Side Spring C0.4
SH12R5.5 Rear Axle Spacer 5.5mm
SC25X7AL 2.5×7 Cap Head Screw Alloy

Parts \# Description
SPR12S0.5 Side Spring C0.5
SPR05 Body Clip
B156 $3 / 16 \times 5 / 16 \times 1 / 8$ Flanged Bearing
B168 $\quad 1 / 4 \times 3 / 8 \times 1 / 8$ Flanged Bearing
SH12S-0.2 Spring Shim 0.2mm
SH12F0.5 Front Axle Spacer 0.5 mm
SH12R0.5 Rear Axle Spacer 0.5 mm
SH1.5W $\quad 7.4 \times 3 \times 1.5 \mathrm{~mm}$ Spacer
SH12R2.0 Rear Axle Spacer 2.0 mm
SH12R3.5 Rear Axle Spacer 3.5 mm
SH0.1 $6 \times 8 \times 0.1 \mathrm{~mm}$ Shim
SH0.25 $6 \times 3 \times 0.25 \mathrm{~mm}$ Spacer
SH0.5 $6 \times 3 \times 0.5 \mathrm{~mm}$ Spacer (Silver)
SH1.0 $\quad 6 \times 3 \times 1.0 \mathrm{~mm}$ Spacer (Gray)
SH4.0 $6 \times 3 \times 4.0 \mathrm{~mm}$ Spacer
OR155SI $\quad 1.5 \times 5 \mathrm{~mm}$ O-Ring Silicone
OR230 $2 \times 30 \mathrm{~mm}$ O-Ring
OR15 1x5mm O-Ring
OR125 $\quad 1.2 \times 5 \mathrm{~mm}$ O-Ring
OR153V $1.5 \times 3 \mathrm{~mm}$ O-Ring Viton
OR91 9x1mm O-Ring
OR915 $9 \times 1.5 \mathrm{~mm}$ O-Ring
SC25X8 M2.5×8 Cap Head Screw
SS3X4 M3x4 Set Screw
SS3X5 M3x5 Set Screw
SS3X10 M3×10 Set Screw
SC3X5 M3x5 Cap Head Screw
SC3X6 M3x6 Cap Head Screw
SB3X5 M3x5 Button Head Screw
SB3X6 M3x6 Button Head Screw
SB3X8 M3x8 Button Head Screw
SB3X10 M3×10 Button Head Screw
SB3X12 M3×12 Button Head Screw
SF3X5 M3x5 Flat Head Screw
SF3X6 M3x6 Flat Head Screw
SF3X10 M3×10 Flat Head Screw
SB3X5AL M3x5 Alloy Screw
STS-A12 A12 Stickers Sheet
SIO100K 100k silicone oil

WWW.AWESOMATIX.COM

UAB "AWESOMATIX"
Email: support@awesomatix.com

